Principal Alarms in Multivariate Statistical Process Control
نویسندگان
چکیده
منابع مشابه
On Reducing False Alarms in Multivariate Statistical Process Control
The primary objective of this note is to reduce the false alarms in multivariate statistical process control (MSPC). The issue of false alarms is inherent within MSPC as a result of the definition of control limits. It has been observed that under normal operating conditions, the occurrence of “outof-control” data, i.e. false alarms, conforms to a Bernoulli distribution. Therefore this issue ca...
متن کاملIntegration of Multivariate Statistical Process Control and Engineering Process Control
Two independent methods for improving quality are engineering process control (EPC) and statistical process control (SPC). The first method tries to minimize variability by handling process variables so as to keep the outputs of the process on target. While the latter method, SPC does the same basic task of minimizing variability by supervising and eradicating the assignable causes of variation...
متن کاملMultivariate statistical process control charts: an overview
In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the...
متن کاملMultivariate Statistical Process Control Using LASSO
This paper develops a new multivariate statistical process control (SPC) methodology based on adapting the LASSO variable selection method to the SPC problem. The LASSO method has the sparsity property that it can select exactly the set of nonzero regression coefficients in multivariate regression modeling, which is especially useful in cases when the number of nonzero coefficients is small. In...
متن کاملMultivariate statistical process control using mixture modelling
When performing process monitoring, the classical approach of multivariate statistical process control (MSPC) explicitly assumes the normal operating conditions (NOC) to be distributed normally. If this assumption is not met, usually severe out-of-control situations are missed or incontrol situations can falsely be seen as out-of-control. Combining mixture modelling with MSPC (MM-MSPC) leads to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Quality Technology
سال: 2008
ISSN: 0022-4065,2575-6230
DOI: 10.1080/00224065.2008.11917710